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The structure of the Gaussian auxiliary field approximation in the theory of phase-ordering ki-
netics is analyzed with the aim of placing the method within the context of a systematic theory.
While we are unable to do this for systems with a scalar order parameter, where the approximation
remains uncontrolled, a systematic development about the Gaussian approximation can be outlined
for systems with a vector order parameter in terms of a suitably defined 1/N expansion.
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I. INTRODUCTION

Although much progress has been made in the under-

standing of phase-ordering kinetics [1, 2], from the point
of view of the theorist, basically, this remains an unsolved
problem. The reason is that in the case of a scalar order
parameter, which is the most relevant for experiments,
no systematic scheme for the development of a pertur-
bation theory is available. This requires the existence
of a soluble zero-order approximation which accounts,
at least qualitatively, for the relevant physical features
of the problem and of a well defined procedure for the
calculation, at least in principle, of the higher-order cor-
rections. The case of a system with continous symmetry
is in better shape since the 1/N expansion meets these
requirements, at least in the case of a nonconserved or-
der parameter. For a conserved order parameter there
are indications that the large-V limit might be singular
3].
[ ]Despite this very unsatisfactory situation, recently
much progress has been made in the development of an-
alytical methods for the computation of the structure
factor through extensive use of approaches based on the
introduction of a Gaussian auxiliary field [4, 5] (GAF),
which improve on the original idea of Ohta, Jasnow,
and Kawasaki [6] (OJK). An exaustive critical account
of these theories has been given by Yeung, Oono, and
Shinozaki [5]. The success of this approach, which for
the moment is mostly limited to nonconserved order pa-
rameter, amounts to the very accurate reproduction of
the scaling function for scalar order parameter [4-6] as
known from experiments or numerical simulations, and
to the prediction of power law tails in the case of vec-
tor order parameter [7, 8]. Thus, these theories seem
to incorporate those basic ingredients that a real theory
of phase-ordering kinetics should have. The shortcom-
ing is that the assumption that the auxiliary field obeys
Gaussian statistics is totally uncontrolled. More than
theories for the moment these are sophisticated compu-
tational prescriptions which are justified a posteriori.

A substantial progress toward a systematic theory then
would be made if it were possible to identify a scheme
within which a GAF approximation plays the role of the
zero-order approximation together with the expansion
parameter which generates the higher-order corrections.
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This type of project is illustrated in the paper of Bray
and Humayun [9].

Motivated by these considerations here we overview
the GAF approximations with the aim of exposing those
features which help to put into focus what is required
for the eventual development of a systematic theory. For
pedagogical reasons we begin with a detailed discussion
of the one particle problem which is exactly soluble and
therefore allows us to illustrate clearly what is involved in
a GAF-type approximation. The same pattern of analy-
sis then will be applied to the field theory case.

II. ONE PARTICLE

Let us consider one particle in a double well potential
and in contact with a thermal reservoir. The decay pro-
cess from the instability point of this system has been
thouroughly studied in the literature [10]. In the limit of
zero-temperature the equation of motion for the position
¢(t) is given by

(ﬁ: T¢_g¢3’

with 7 > 0, g > 0. In order to study the quench of this
system from high temperature to zero-temperature, let
us consider a Gaussian probability distribution for the
initial condition ¢¢ = ¢(to),

Po(go) = ———e™ "

o(®Po) =
V2rA

Due to the symmetry of the problem the average position
of the particle vanishes identically (¢(t)) = 0 and we
concentrate on the behavior of the fluctuations

(2.1)

2

a8

2

(2.2)

+oo

S(t) = ($*(t)) = dpP($,t)47,

(2.3)

where P(¢,t) is the probability that the particle occu-
pies the position ¢ at the time ¢. This quantity can be

computed exactly since the equation of motion (2.1) can
be solved

¢(t) = f(t - t07¢0) = [1 T (g/r);(ziiz — 1)]1/2’

(2.4)
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with 7 = e"(*~%), Thus, for the probability density we
find

4Nt to,¢)
do
_ 1 ‘152
_ 1 expf 2Ar2[14(g/r)¢2<1—”2”}, (2.5)

VarAr2  [1-(g/r)e?(1—772)]3/2

where f~1(t — to,#) is the inverse of f(t — to, o). We
insert into (2.3) obtaining

P(¢,t) = Po[f~'(t — to, 8)]

S(t) =" —— 1){1— wze (1 — erf(y/z)]}.

where z = r/[2Ag(7? — 1)] and erf(z) is the error func-
tion. For short time (2.6) yields exponential growth of
the fluctuations

S(t) ~ AT? (2.7)

due to the initial instability, while for large time we get

T T2

S(t) ~ - ———[1 — V7z], .
which describes the saturation toward the finite equilib-
rium value §(oc0) = ¢2, = r/g due to the fact that even-

tually the particle sits at the bottom of one of the two
potential wells and the probability density (2.5) develops
two narrow peaks centered about the equilibrium values
Peq = £4/T/g.

If the exact solution of the problem was not available,
this type of behavior could not have been obtained via
a straightforward perturbation expansion in the nonlin-
ear coupling g. The zero-order amounts to make the
Gaussian approximation in (2.5) which describes only the
regime of exponential growth (2.7). Hence, the zero-order
theory does not reproduce the qualitative picture of the
process, nor is any improvement obtained by taking into
account corrections of finite order. The saturation to a
finite final equilibrium value is obtained within a pertur-
bative scheme, as shown by Suzuki [10], by resorting to
the infinite resummation of the most divergent terms in
the series.

However, rather than following this route, let us use
the method which in the following will be generalized to
the field theory case. The idea is to introduce an auxiliary
variable m(t) through a transformation

¢(t) = a(m(?)), (2.9)

which takes care of the basic nonlinear features of the
problem in such a way that the behavior of m(t) can be
treated by straightforward perturbation theory. Namely,
the transformation must be such that while m(t) is al-
lowed to grow indefinitely the saturation of ¢(¢) to a finite
value is induced by o.

Substituting (2.9) into (2.1) one obtains the equation
of motion for m(t)

o(m)

" o'(m)

[r— ga?(m)], (2.10)
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with the transformed probability density of initial condi-
tions

Pmo(mo) :P()(O’(mo)|R)0’(mo). (211)

where mo = m(to) and Po(¢po|R) is the probability den-
sity (2.2) conditioned to ¢¢ belonging to the range of
values R for which (2.9) is invertible. Thus, in terms
of m(t) we cannot quite get the fluctuations (2.3), but
fluctuations conditioned to ¢ € R,

S(1R) = [ doP(@, R = [ dmPrm. ) (m).

(2.12)

where R is the domain
R=(¢*<r/g)

and P,,(m,t) is the probability density of m at the time
t. How important this restriction is depends on what the
statistical weight of trajectories lying outside R is and
this in turn is related to the size of the variance A of the
initial probability density (2.2) compared to the size /g
of the domain R. In the following, we shall neglect the
distinction between S(t|R) and S(t) by assuming A <«
r/g.

Now, if the transformation o is such that (2.10) can
be solved, at least in perturbation theory, denoting the
solution by m(t) = h(t — to, mo) we have

(2.13)

dh™1(t — to, m)
dm

P, (m,t) = Pp, [h"'l(t — to, m)]

=Po(o [ (t — to,m)]|R)

—-1 _
XMMU, {h'l(t - tg,m)],

— (2.14)

which formally solves the problem since it gives an ex-
plicit expression for P, (m,t) in terms of the known quan-
tities Py,o, and h.

In order to see how this works in practice, let us go
back to the equation of motion (2.10) for m(t) and let us
look for the transformation o which simplifies as much as
possible the behavior of m(t). The first attempt is for an
outright linearization of (2.10). If this was not possible
then, as stated above, o ought to be such that (2.10) can
be solved in perturbation theory. However, in this case,
linearization can be achieved. Imposing

Z’((Tn)) [r — ga*(m)] = rm, (2.15)
one finds
=o(m) = _L_T 2.16
b=olm) = (2.16)
and
m(t) = h(t — to, mg) = TMyo. (2.17)

Indeed, we have that while m(t) grows exponentially ¢(t)
eventually saturates via (2.16) to the final equilibrium

value ¢eq = :t\/r—/vg. Namely, the transformation o ac-
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counts for the nonperturbative features of the problem.

Putting together (2.14), (2.16), and (2.17) we have the
exact solution of the problem in terms of the auxiliary
variable m(t). The motivation for going to this form of
the solution is that in more complicated cases where h
and therefore P,,(m,t) cannot be explicitly obtained, the
consideration that the auxiliary variable m(t) should not
be much affected by the nonlinear nature of the problem
authorizes to attempt a Gaussian ansatz for P,(m,t).
This will be the crucial step of the GAF approximation
in the phase-ordering problem. The difficulty with an
ansatz, however, is that it may not be possible to control
the corrections to it. In any case, it should be clear that a
Gaussian ansatz does not amount to an overall lineariza-
tion of the problem, since in (2.12) the ansatz amounts to
use a Gaussian form for P,,(m,t) while the nonlinearity
remains through the explicit factor 02(m). To be more
specific, since P, is Gaussian it is evident from (2.14)
that P,,(m,t) is Gaussian if o and h are linear. Thus,
should it be possible to find an expansion parameter A
such that o and h become linear for A — 0, the Gaussian
approximation amounts to take this limit inside Py, (m,t)
in (2.12) but not in the explicit factor o2(m).

Let us see how this works in the one particle context.
Since in this case h(t — to,m) is already linear, in order
to make P,,(m,t) Gaussian we need to linearize only o
in (2.14). From (2.16) we may write

g 7.—4m4

2(.—1 — -2,_.2_J 2.18
A e 7oy M
and using this in (2.14) we obtain
Pn(m,t) = PO (m,t)K(t m,g/7), (2.19)
with
1 m?
po) - —_ .
m (m’ t) \/W exp 2A T2 (2 20)
and
exp | £ e T
K(t7'm,g/r) = { i+(o/r) ]} (2.21)

1+ (g/r)*r"“’mz]%

Thus, in this case it is possible to identify the nonlinear
coupling g with the expansion parameter A which gener-
ates Gaussian statistics for m in the limit A — 0. Then,
following the previous discussion, the lowest order is ob-
tained by setting g — 0 in (2.19) but not in the explicit
factor 0%(m). From (2.12) we then get

SO (t) = /00 dmP® (m,t)o?(m)

= {1 vmen - (o)},

with y = r/(2A7%g), which gives S(®)(t) ~ A7? at short
time as in (2.7) and S (t) ~ (r/g)[1 — \/7y] for long
time. The qualitative effect of the saturation is correctly
reproduced, although there is a quantitative discrepancy
with (2.8) in the law of approach to equilibrium. In con-
clusion, in the one particle case the Gaussian approxi-

(2.22)
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mation can be identified with the zero-order step in a
systematic development where higher-order corrections
are generated by expanding K (7~'m,g/r) in powers of
g.

III. PHASE-ORDERING DYNAMICS

Let us now turn to the field theory case. The phase-
ordering dynamics following the quench from high tem-
perature to zero-temperature of a system with a noncon-
served order parameter is described by the equation of
motion

94(Z, t)

= V2¢(&,t) — V' ($(Z,1)),

with a Gaussian initial state which generalizes (2.2)

(3.1)

Po[4o(@)] = e 7/ #283® (3:2)
Zo
and where V(¢) is a potential of the double well type.
Again, due to the symmetry of the problem, the av-
erage order parameter vanishes identically (¢(Z,t)) = 0
and the observable of interest is the equal time correla-
tion function,

_ / dprdgoP (b1, Ert; o, ot iy, (3.3)
or the structure factor
Ok t) = / Az G (3, 1), (3.4)

where @ = & — 2. In (3.3), P(¢1,Z1t; P2, Tat) is the
joint probability density that ¢(Z,t) takes the value ¢,
at the space-time point (Z;,t) and the value ¢, at the
space-time point (Z,t).

It has been well established [1, 2], both from experi-
ment and numerical simulations, that in the late stage of
the dynamics these quantities obey scaling

G(4,t) ~ f(u/L()), (3.5)

C(k,t) ~ L4(t)g(kL(t)), (3.6)

where L(t) is the basic length in the problem which is re-
lated to the average size of domains and obeys the growth
law L(t) ~ t'/2, while f(z) and g(z) are scaling func-
tions. The origin of scaling is that in the late stage the
order parameter reaches local equilibrium and forms do-
mains of the ordered phases which evolve according to
self-similar patterns. From the existence of sharp inter-
faces separating domains one can deduce [2] the short
distance behavior of f(z) or the long wavelength behav-
ior of g(z) (Porod’s law)
f(u/Ly=1-2u/L+---

foru < 1, (3.7)

g(kL) ~ (kL)~U*Y) for kL > 1, (3.8)

as well as the saturation law [4] of the order parameter



a

S(t)=G(E=0,t) =2 [1 - 70)

eq

+0(L™?)],

(3.9)

where ¢, is the value of the order parameter in the final
equilibrium state. Equations from (3.5) to (3.9) contain
the minimal phenomenological information that a theory
of phase-ordering dynamics should account for.

At this point it is important to emphasize that the scal-
ing behavior described above applies to the late stage of
the process where domains are close to saturation and
grow through the motion of the interfaces. This stage
of the dynamics is dominated by the nonlinear nature of
the problem and like in the one particle case it cannot be
obtained through any straightforward perturbation ex-
pansion. The great difference with the one particle case
is that Eq. (3.1) cannot be solved for any realistic po-
tential. Therefore, in order to make analytic progress,
we turn to the generalization of the auxiliary variable
method.

IV. AUXILIARY FIELD METHOD

Following the idea illustrated above we now introduce
an auxiliary field through a local nonlinear transforma-
tion

o(Z,t) = o(m(Z,t)),

which in general is defined through a relation involving
the potential

Klo(m)] = V'(0).

(4.1)

(4.2)

We note that such a transformation cannot be a lineariz-
ing transformation as it was in the one particle case. In
fact, in that case, m(Z,t) ought to be the free field and
the relation between the free field and the interacting
field is certainly nonlocal, as it can be easily seen gener-
ating the formal solution of (3.1) by iteration. Thus, the
transformation (4.1) is introduced in order to take care
at least of the gross nonlinear effect which is the satura-
tion of the order parameter to the finite final equilibrium
value ¢.q, leaving the rest, possibly, to perturbation the-
ory. Accordingly, for large time the transformation must
go over to the form

o(m(Z,t)) = Peq sgn(m(&,t)).

The equation of motion of the auxiliary field is ob-
tained from (3.1)

(4.3)

om

b ] _1_ " 2yt

= Vim g Lo (m)(Vm)? - V() (44)
with the transformed initial condition

Py [mo(F)] = Polo(mo(&))]J (¢o, mo), (4.5)

where J(¢o,mq) is the Jacobian of the transformation
(4.1) at the initial time. Representing the solution of
(4.4) as a functional of the initial configuration labeled
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by & and t

m(&,t) = h(Z,t — to; [mo(@)]), (4.6)

the probability of a configuration [m(Z)] at the time ¢
can be obtained in terms of the initial probability density
(3.2)

Pr[m(Z),t] = Py [ (E,t — to, [m(Z)])] J (mo,m)

= Py[o(h™1 (&t — to, [m(&))))]

XJ(¢0,m0)J(m0,m), (47)

where h™! is the inverse of (4.6) and J(mg,m) is the
Jacobian of this transformation. The above result is the
analogue of (2.14) and specifies the statistics of the auxil-
iary field m(&,t) in terms of o, h and the statistical prop-
erties of the initial condition.

Neglecting for simplicity considerations pertaining to
the restriction of averages to domains of configurations
where (4.1) is invertible, the correlation function (3.3)
may be rewritten as

G(’J,t) = /dmldmgpm(ml,flt;mg,a_:'zt)o(ml)a(mz),

(4.8)
where the joint probability of m is related to (4.7) by

Pm(ﬂll,flt; Tﬂq,.’fzt)

= /d[m(:i‘)]Pm[m(f),t]&(ml—m(a’c'l))é(mz—m(a'c’z)).
(4.9)

The above form (4.8) for the correlation function makes
a progress over (3.3) if the joint probability of m is avail-
able. This requires that the transformation o is such that
Eq. (4.4) for m is soluble. Short of this, as explained in
Sec. II, one resorts to the GAF approximation through
the linearization of o and h inside Pj.

Let us now review the predictions of the GAF approxi-
mations. If m(&,t) is Gaussian, the probability densities
are of the form

PO (my, &1t;my, Fat)

- %e"p{‘z(l ~712)so<t) i+ m3 - 2”"”"‘2]}
(4.10)
and
PO(m,ét) = ——— e {— m } (4.11)
) (m, & —\/TSO(T) Xp 350 |’ .
with
So(t) = (m?(Z,))o , Go(i,t) = (m(Z1,t)m(Z2,1))o,
(4.12)
y =@, t) = 3;2—‘(‘;;—) , Zm = 21S0(t)V/1 — 2,
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and where ()¢ denotes averages with respect to P,
Hence, for the fluctuations of the order parameter one
has

S(t) = / dmP®) (m, Z,t)o?(m), (4.13)

and for the scaling function

f(u/L(t)) = / dmldmzP,(,?)(ml, Z1t;ma, Tat)
xsgn(my )sgn(mz)

2. 4
=— . 4.14
Zsin1() (414
Within this approach the problem is reduced to the com-
putation of Go(4,t).
For h to be linear Eq. (4.4) must be of the form
(7]
a—rtn =V’m +a(t)m
where a(t) is some function of time to be determined.
Upon linearizing o the initial probability density (4.5)
becomes

(4.15)

Py [mo(Z)] = Po[emo(Z)], (4.16)

where c is a constant. Solving (4.15) by Fourier transform
and averaging over initial conditions with (4.16) one finds

Co(k,t) = So(t)LE(t)go(kL(t)), (4.17)
Go(i,t) = So(t)v(ll/L(t)), (4.18)
with
(L(t) =t2,
go(kL) = exp ( — 2(kL)?),
$ ¥(u/L) = exp(—2), (4.19)

So(t) = CTJexp (2b(¢)),

[ b(t) = [ dt'a(t)).

Inserting the above expression for - in (4.14) one obtains
the Ohta-Jasnow-Kawasaki [6] result for the scaling func-
tion which correctly reproduces the behaviors (3.7), (3.8).
It is then a matter of studying the behavior of S(¢) and
for this we must go over to the specific implementations
of the method.

A. On site linearization

Making a direct extension to the field theory case of
the procedure adopted for one particle, let us look for a
transformation o which linearizes the on site potential in
(4.4)

_V'(9)
o'(m)

=rm, (4.20)

where r is a constant. This yields

2625
om 2 2
B = V*m+rm — Q(m)(Vm)?, (4.21)
where
U"(m)
= ——. 4.22
a(m) = -T2 (422)
With the double well potential of the form
Vi¢) = —%sz + %qb“, (4.23)
(4.20) reduces to (2.15) yielding as in (2.16)
m
o(m)= ——— (4.24)
(1 + (g/r)m?]*
and
Q(m) = 32 m (4.25)

7 [1+(g/r)m?]’

However, contrary to what happens for one particle, even
though the transformation (4.24) manages to account for
the saturation of the order parameter, it is not yet suf-
ficient to linearize the equation of motion. This is done
by introducing an approximation, which is optimized by
the mean field prescription [11]

g 2 m? m
(4.26)

Q(m)(Vm)?

where averages must be computed self-consistenly. Note
that although (4.26) yields the best linear approximation
to the equation of motion, it remains an uncontrolled
approximation since no small parameter emerges which
allows us to compute corrections to it. According to the
general discussion made above the implementation the
GAF approximation requires, besides the linearization
of the equation of motion, also the linearization of o.
Setting o(m) = m in (4.24), the initial condition is given
by (4.16) with ¢ = 1.

With (4.26) the equation of motion is of the form (4.15)
with

a(t) =~ 32 Do(t) g~ ()

eaot (4.27)
where
Do(t) = (Vm)) = [ £2CoE.0). (4.28)
Next, using (4.13),
BN Tl o
x[1— erf(\/g—s_%)]} (4.29)

and making the assumption to be verified a posterior:
that So(t) grows with time, asymptotically we have

S(t) = (4.30)

r r 1
A Vaam toGw)
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Inserting into (4.27), to dominant order we get

b(t) =7 — gDol®) o(t™),

4.31
So() (4.31)
which gives b(t) = rt. Next, using (4.19) we find
2rt
So(t) = A————~eth{4 i }, (4.32)

which is consistent with the assumption made about
So(t). Finally, inserting the above result into (4.30), we
obtain that S(t) saturates exponentially fast to the equi-
librium value qﬁzq = r /g, rather than according to a power
law as expected from (3.9).

B. KYG theory

The behavior of S(t) obtained above is what one finds
resumming the singular perturbation series of Kawasaki,
Yalabik, and Gunton [12] (KYG). The KYG theory is
contained in the above treatment as a particular case. If,
in addition to the mean field approximation, one makes
also an expansion in the nonlinear coupling g, to lowest
order Q(m) = 0 and the equation of motion becomes

om

ot
namely, the auxiliary field coincides with the free field.
The transformation (4.24) together with (4.33) corre-
sponds exactly to the KYG theory, which, therefore, in
the present context amounts to the statement that all
the important nonlinear features of the problem are ad-
equately taken care of by the transformation (4.24).

= V?m + rm, (4.33)

C. BH theory

If in (4.26) we keep the first order in g the equation of
motion becomes

om w2 g 2
e Vém + [7‘ —3;((Vm) )] m,
which is of the type of the equation obtained by Bray
and Humayun [9] (BH) starting from an ad hoc potential
and which leads to the correct behavior for S(t). In fact,
in this case (4.27) reduces to

(4.34)

b(t) =1 — 3250(t)Ld(t) / k2e—2kt
r k

(4.35)

and setting to zero the left-hand side for large time

So(t) ~ L3(t). (4.36)

Inserting this result in (4.30), the behavior (3.9) of S(t) is
recovered. This is due to the cancellation of Sp(¢) in the
denominator of (4.27), which occurs only in first order in
g. Notice that from the above result for So(t) and the
definition (4.19), one obtains a(t) ~ (d + 2)/4t, which
coincides with the form for a(t) introduced by Oono and
Puri [13] in their improvement of the OJK theory.

In summary, the GAF approximation obtained via the
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linearization of the on site potential (i) does not describe
correctly the saturation law of the order parameter, ex-
cept for the very special case where the BH theory ap-
plies, and (ii) it is an uncontrolled approximation since
there is not a systematic expansion scheme within which
it plays the role of the zero-order theory.

D. Mazenko transformation

Let us now go to a different way of introducing the
auxiliary field due to Mazenko [4], where equation (4.2)
is chosen in such a way that o(m) reproduces the profile
of the static interface

a’(m) =V'(o). (4.37)

In this case, m(Z,t) has the physical interpretation of the
distance to the nearest interface. Using (4.37) in (4.4),
we obtain

9

5 = Vim [ - (Ym)Q(m),
where Q(m) is still given by (4.22). Note that since V'(o)
is an odd function from (4.37) and (4.22), it follows that
Q(m) is also an odd function. Thus, the mean field lin-
earization of (4.38) yields

om

ot
where H (t) is some function of time whose explicit form
is not important. Hence, Eq. (4.27) now gives

(4.38)

=Vim+[1 - ((Vm)?)]H (t)m, (4.39)

b(t) = [1 - So(t)Ld/ (4.40)

kze—%”} H(t),
k

which, apart for the overall factor H(t), is identical to
(4.35) and therefore leads to the same result (4.36) for
So(t) which yields the correct behavior of S(t). Com-
paring (4.34) with (4.39), we see that the BH theory is
a particular case arising with H(t) constant. Thus, the
GAF approximation obtained within the static interface
approach yields correct results, but for the same reasons
pointed out above it remains an uncontrolled approxima-
tion.

E. Generalization of the transformation

We end up this section by considering a generalization
of the transformation obtained by allowing for an explicit
time dependence. The idea is to see that if in doing so
one may get closer to the linearization of the equation
for m(Z,t), as suggested by recent work of Puri and Bray
[14]. Replacing (4.1) by

6(2,t) = o(t,m(3,1)) (4.41)
the equation for m becomes
om 2 1 %o , 0o ,
om _ 1 % _vie).
at =V ™" be/om [ (V)" — 5 ()]
(4.42)

Let us then determine the explicit dependence of o on t



Imposing 0”02 — 30(0’)? = 0, we find o(0,m) =
+(m)~'/2 and inserting into (4.47) and (4.46) eventually
we have

olt,m) = :t[l + (g/r)m(r2 — 1)] 2 (4.48)
and
Om 3 T2
E =V2m — 5 [T‘zm — g('r_z — 1)] (Vm)2
(4.49)

Indeed, the equation of motion for m is “almost” linear
since the nonlinear term vanishes exponentially fast, but
the scheme it is not of much use in generating a GAF
approximation, since (4.48) cannot be linearized.

V. VECTOR FIELDS

Let us now consider the case of a vector order param-
eter with N components, (5(:3) = [$1(Z), ..., dN(Z)]. In
this case, a systematic expansion scheme about the GAF
approximation can be outlined, although its practical im-
plementation remains to be explored.

Phenomenological expectations in this case are a power
law tail in the scaling function of the structure factor

[7,8)

9(@) ~ o @+N), (5.1)

which generalizes Porod’s law and the saturation law [8]

b

S() = ¢2, [1 -t O(L-3)] (5.2)

in place of (3.9). Considering the equation of motion

0¢a(Z,t)

9 2
9t = V2¢a(57 t) - @V((b(m,t))’ (5'3)

with the potential
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. . 2 2
by imposing Qt,m) = _ 0% /0m . (4.45)
oo 8o /0m
a9, _V,(U)a (4.43) . . . . .
ot Equation (4.43) is nothing but the one particle equation
of motion which, using the potential (4.23), yields the
which yields solution (2.4), i.e.,
To(0,m)
om 2 2 U(t, m) = 1 (4.46)
5 = Vm- Q(t,m)(Vm), (4.44) [1+ 202(0,m)(r2 — 1)) ?
with and
J
9.,2[ 2__3 2 "no__ g 2_3 2
Qtmy = 77107 = 30( V] + (0" — 20" — 30 ("))} wan
0’[%02 — 271292 — 1]
[
where the o’s on the right hand side stand for o(0,m) A T g g
and the primes denote derivatives with respect to m. Vi) = _Ed) + Z]—V(QS ) (5-4)

the auxiliary field m(Z,t) is introduced by generalizing
to the vector case the transformation (4.24)

Ma

Oa(M) = ————,
[+ )’

(5.5)

which yields the equation of motion for m

Oma g 2
W =V Mo +TMy — m{ma z.':(Vm‘,)

+ [2Vma - 3, (myVmy) = fyma(myVm,)?] }
1+ % Y,m3]

(5.6)

For the equal time correlation function G(u,t) =
(¢a(Z1,t)Pa(Z2,t)), which is independent of o due to the
rotational symmetry of the potential, we have

G(d, t) = / dity it P (1o, Z1t; 1, 89) 0 (1701) 7o (103),

(5.7)

where P,,, which is related to the initial probability den-
sity Py through the analogues of (4.7) and (4.9), depends
explicitly on N through o and h. As previously stated
P,, becomes Gaussian upon linearizing o and h. We now
show that this is achieved by taking the large-N limit.
The major difference with the scalar case than is that now
there emerges A = 1/N as the natural parameter which
yields the Gaussian approximation in the limit A — 0.

Taking the limit N — oo terms of the type % Y a8 in
(5.5) and (5.6) are replaced by the average {(g,) yielding
the linear equations

Ma

[1+ gso(t)]%

oa(m) =

(5.8)

and
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Omg,

ot

=Vime + [r - g((Vma)z)]ma (5.9)
since (m,Vm,) vanishes. Hence, as anticipated, in the
large- N limit the auxiliary field m is Gaussian. Further-
more, Eq. (5.9) is of the BH type yielding (4.36) for
Solt) = (m2(1)).

It is important to realize that the large- N limit we are
considering here is quite different from the usual large-V
limit [15] performed on the equation of motion (5.3) for

—

¢. The latter one is recovered in the present context by
taking the large-N limit, namely, using (5.8), also in the
explicit 0,’s appearing in (5.7) and eventually obtaining

- T T Uu
G(U,t) = ;l:]. - g?] exp(-—gz—z)
Instead, according to the general structure of the GAF
approximation which we have repeatedly illustrated
above, N must be kept fixed to whatever value it has
been originally specified in the explicit o, s in (5.7), while
the N — oo limit is taken inside P,,. In so doing from

(5.5) and (5.7) we obtain the Bray, Puri, and Toyoki [7]
(BPT) result for the scaling function

(5.10)

u

f(__) = (m(Z1,t) - m(Z2,t))

L(t)
= [P PGy )

where B(z,y) is the § function, F'(a, b;c; z) the hyperge-
ometric function, and y(u/L) is given by (4.19). From
the above result follows the power law tail (5.1). Fur-

thermore, from S(t) = (¢2) we obtain

m2 _m?

1 dm
St‘ -= — 2Sg N
= [ s i g

(5.12)

and carrying out the integral

Nr, Nr )N/Ze Nr F(

Nr N N
(t) = —( 2959 "
2g 2950

B 37 2g50

> ., (5.13)

where I'(z,y) is the incomplete v function. Expanding
up to first order in 1/S, we obtain

2 N r

eq[l - =3 g_-iso(t)] for N > 2
S(t) ~ (5.14)
2 T —

eq[l + m] fOI‘ N = 2,

which yields the power law behavior (5.2), contrary to
the exponential saturation which one obtains in the BTP
approach.

These results show that the expected phenomenologi-
cal behavior is obtained at zero-order within the 1/N ex-
pansion of the probability density of the auxiliary field.
In principle, systematic corrections could be obtained via
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the higher-order terms in the 1/N expansion of P, al-
though we do not expect that such a scheme of com-
putation might be easily implemented in practice. It is
worth pointing out that the scheme for the systematic
improvement of the GAF approximation for vector fields
presented here is conceptually different from that pro-
posed by BH in two respects: (i) while we use the stan-
dard quartic potential (5.4) BH need to invoke an ad hoc
potential which cannot even be written in closed form
and (ii) the expansion is made in 1//N, where here NV is
the number of components of the order parameter rather
than the number of components of an additional internal
color index. Finally, the comparison between (5.10) on
one side and (5.11), (5.14) on the other clearly shows the
difference between the standard 1/N expansion and the
one we have presented here. The most important point
is that while there are no localized defects in lowest order
in the usual 1/N expansion since the correlation function
(5.10) decays exponentially, the power law tail (5.1) im-
plied by (5.11) shows that our reformulation of the 1/N
expansion describes defects in lowest order.

VI. CONCLUDING REMARKS

In conclusion, in this paper, we have analyzed the se-
quence of steps which must be taken within the frame-
work of a first principles theory in order to generate GAF
approximations. The analysis has been restricted to sys-
tems with nonconserved order parameter. The idea was
to look for the systematic expansion scheme which allows
us to control the corrections to the GAF approximations.
A project of this type is suggested by the physical mo-
tivation behind the introduction of the auxiliary field.
This being more smooth and less nonlinear than the or-
der parameter field, hopefully should be tractable in per-
turbation theory. Our results are negative for the scalar
case, in the sense that we are unable to come up with the
expansion scheme within which the GAF approximation
can be identified with the zero-order approximation. It
should be mentioned that there are indications [16,9] that
the GAF approximation becomes exact in the limit of in-
finite space dimensionality, suggesting the 1/d expansion
as a possible systematic expansion scheme. This is an
interesting line of research worth further investigation.

The outlook is somewhat better in the case of a vector
order parameter. In this case, one can set up the the-
ory in such a way that the large-IV limit yields the GAF
approximation. Consequently, one can expect that there
exists a 1/N expansion where corrections to the GAF
approximation are generated systematically. Finally, ap-
proximations which go beyond the GAF approximation
have been introduced recently by Mazenko [17]. In fu-
ture work, we plan to look for the connection between
that work and the point of view developed here.
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